A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification

نویسندگان

  • Timo Ojala
  • Matti Pietikäinen
  • Topi Mäenpää
چکیده

This paper presents generalizations to the gray scale and rotation invariant texture classification method based on local binary patterns that we have recently introduced. We derive a generalized presentation that allows for realizing a gray scale and rotation invariant LBP operator for any quantization of the angular space and for any spatial resolution, and present a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray scale variations, since the operator is by definition invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity, as the operator can be realized with a few operations in a small neighborhood and a lookup table. Excellent experimental results obtained in a true problem of rotation invariance, where the classifier is trained at one particular rotation angle and tested with samples from other rotation angles, demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns. These operators characterize the spatial configuration of local image texture and the performance can be further improved by combining them with rotation invariant variance measures that characterize the contrast of local image texture. The joint distributions of these orthogonal measures are shown to be very powerful tools for rotation invariant texture analysis. nonparametric texture analysis distribution histogram Brodatz contrast

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns

This paper presents a theoretically very simple yet efficient multiresolution approach to gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns termed ‘uniform’ are fundamental properties of local image texture, and their...

متن کامل

Compound Local Binary Pattern (CLBP) for Rotation Invariant Texture Classification

The local binary pattern (LBP) provides a simple and efficient approach to gray-scale and rotation invariant texture classification. However, the LBP operator thresholds P neighbors at the value of the center pixel in a local neighborhood and employs a P-bit binary pattern to encode only the signs of the differences between the gray values. Thus, the LBP operator discards some important texture...

متن کامل

The local binary pattern approach to texture analysis - extensions and applications

This thesis presents extensions to the local binary pattern (LBP) texture analysis operator. The operator is defined as a gray-scale invariant texture measure, derived from a general definition of texture in a local neighborhood. It is made invariant against the rotation of the image domain, and supplemented with a rotation invariant measure of local contrast. The LBP is proposed as a unifying ...

متن کامل

Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns

This paper presents a theoretically very simple yet efficient approach for gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The proposed approach is very robust in terms of gray scale variations, since the operators are by definition invariant against any monotonic transformation of th...

متن کامل

Pyramid-Based Multi-structure Local Binary Pattern for Texture Classification

Recently, the local binary pattern (LBP) has been widely used in texture classification. The conventional LBP methods only describe micro structures of texture images, such as edges, corners, spots and so on, although many of them show a good performance on texture classification. This situation still could not be changed, even though the multiresolution analysis technique is used in methods of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001